Monday 16 October 2017

Weighted moving average filter matlab no Brasil


Descrição O Matlab inclui funções chamadas movavg e tsmovavg (média móvel de séries temporais) na Caixa de Ferramentas Financeira, o movAv foi projetado para replicar a funcionalidade básica destes. O código aqui fornece um bom exemplo de gerenciamento de índices dentro de loops, o que pode ser confuso para começar. Ive deliberadamente mantido o código curto e simples para manter este processo claro. O movAv executa uma média móvel simples que pode ser usada para recuperar dados ruidosos em algumas situações. Funciona tomando uma média da entrada (y) sobre uma janela de tempo deslizante, cujo tamanho é especificado por n. Quanto maior for n, maior a quantidade de suavização do efeito de n é relativa ao comprimento do vetor de entrada y. E efetivamente (bem, tipo de) cria um filtro de freqüência lowpass - veja a seção de exemplos e considerações. Como a quantidade de suavização fornecida por cada valor de n é relativa ao comprimento do vetor de entrada, sempre vale a pena testar diferentes valores para ver o que é apropriado. Lembre-se também de que n pontos são perdidos em cada média se n é 100, os primeiros 99 pontos do vetor de entrada não contêm dados suficientes para uma média de 100pt. Isto pode ser evitado um pouco empilhando médias, por exemplo, o código eo gráfico abaixo comparam um número de diferentes médias de janela de comprimento. Observe como liso 1010pt é comparado a uma única 20pt média. Em ambos os casos, 20 pontos de dados são perdidos no total. Criar xaxis x1: 0.01: 5 Gerar ruído noiseReps 4 ruído repmat (randn (1, ceil (numel (x) noiseReps)), noiseReps, 1) reestruturação de ruído (ruído, 1, X) 10noise (1: length (x)) Médias de Perfrom: y2 movAv (y, 10) 10 pt y3 movAv (y2, 10) 1010 pt y4 movAv (y, 20) 20 pt y5 movAv (y, 40) 40 pt (X, y, y2, y3, y4, y5, y6) legenda (dados brutos, média móvel 10pt, 1010pt, 20pt, 40pt, 100pt) xlabel (x) ylabel Y) título (Comparação de médias móveis) movAv. m função de execução do programa movAv (y, n) A primeira linha define o nome das funções, entradas e saídas. A entrada x deve ser um vetor de dados para realizar a média em, n deve ser o número de pontos a executar a média sobre a saída conterá os dados médios retornados pela função. Prealocar a saída outputNaN (1, numel (y)) Encontrar o ponto médio de n midPoint round (n2) O trabalho principal da função é feito no loop for, mas antes de iniciar duas coisas são preparadas. Em primeiro lugar a saída é pré-alocada como NaNs, isso serviu dois propósitos. Em primeiro lugar, a pré-alocação é geralmente uma boa prática, pois reduz a memória que o Matlab tem de fazer, em segundo lugar, torna muito fácil colocar os dados médios em uma saída do mesmo tamanho do vetor de entrada. Isto significa que o mesmo xaxis pode ser usado mais tarde para ambos, o que é conveniente para plotar, alternativamente, os NaNs podem ser removidos mais tarde em uma linha de código (output output (A variável midPoint será usada para alinhar os dados no vetor de saída. N 10, 10 pontos serão perdidos porque, para os primeiros 9 pontos do vetor de entrada, não há dados suficientes para tomar uma média de 10. Como a saída será menor do que a entrada, ele precisa ser alinhado corretamente. Ser usado para que uma quantidade igual de dados seja perdida no início e no fim e a entrada seja mantida alinhada com a saída pelos buffers NaN criados quando a saída de pré-alocação for. Over (a: b) ban Calcular a saída média (amidPoint) mean (y (a: b)) end No loop for, uma média é tomada em cada segmento consecutivo da entrada. Definido como 1 até o comprimento da entrada (y), menos os dados que serão perdidos (n).Se a entrada é de 100 pontos lo Ng e n é 10, o ciclo irá decorrer de (a) 1 a 90. Isto significa a proporciona o primeiro índice do segmento a ser calculado a média. O segundo índice (b) é simplesmente an-1. Assim, na primeira iteração, a1. N10. Assim b 11-1 10. A primeira média é tomada sobre y (a: b). Ou x (1:10). A média desse segmento, que é um valor único, é armazenada na saída no índice amidPoint. Ou 156. Na segunda iteração, a2. B 210-1 11. Assim a média é tomada sobre x (2:11) e armazenada na saída (7). Na última iteração do laço para uma entrada de comprimento 100, a91. B 9010-1 100 assim que a média é tomada sobre x (91: 100) e armazenada na saída (95). Isto deixa a saída com um total de n (10) valores de NaN no índice (1: 5) e (96: 100). Exemplos e considerações As médias móveis são úteis em algumas situações, mas nem sempre são a melhor escolha. Aqui estão dois exemplos onde eles não são necessariamente ótimos. Calibração do microfone Este conjunto de dados representa os níveis de cada freqüência produzida por um alto-falante e gravada por um microfone com uma resposta linear conhecida. A saída do alto-falante varia com a freqüência, mas podemos corrigir essa variação com os dados de calibração - a saída pode ser ajustada em nível para considerar as flutuações na calibração. Observe que os dados brutos são barulhentos - isso significa que uma pequena mudança de freqüência parece exigir uma grande alteração errática no nível a ser considerado. É este realista Ou é este um produto do ambiente de gravação É razoável, neste caso, para aplicar uma média móvel que suaviza a curva de nível de freqüência para fornecer uma curva de calibração que é ligeiramente menos errático. Mas por que isso não é o ideal neste exemplo? Mais dados seriam melhores - múltiplas calibrações executadas em média destruiriam o ruído no sistema (enquanto o seu aleatório) e fornecessem uma curva com menos detalhes sutis perdidos. A média móvel pode somente aproximar isto, e pode remover alguns mergulhos da freqüência mais elevada e os picos da curva que realmente existem. Seno ondas Usando uma média móvel em ondas senoidal destaca dois pontos: A questão geral de escolher um número razoável de pontos para realizar a média mais. Seu simples, mas há métodos mais eficazes de análise de sinal do que a média dos sinais oscilantes no domínio do tempo. Neste gráfico, a onda sinusoidal original é plotada em azul. O ruído é adicionado e plotado como a curva laranja. Uma média móvel é realizada em números diferentes de pontos para ver se a onda original pode ser recuperada. 5 e 10 pontos fornecem resultados razoáveis, mas não removam o ruído inteiramente, onde como um número maior de pontos começa a perder detalhe de amplitude como a média estende-se sobre fases diferentes (lembre-se que a onda oscila em torno de zero, e média (-1 1) . Uma abordagem alternativa seria construir um filtro passa-baixa que possa ser aplicado ao sinal no domínio da frequência. Eu não vou entrar em detalhes, pois vai além do escopo deste artigo, mas como o ruído é consideravelmente maior freqüência do que a freqüência das ondas fundamental, seria bastante fácil, neste caso, para construir um filtro passa-baixa que irá remover a alta freqüência Eu preciso calcular uma média móvel sobre uma série de dados, dentro de um loop for. Eu tenho que obter a média móvel em N9 dias. O array Im computing in é 4 séries de 365 valores (M), que são valores médios de outro conjunto de dados. Eu quero traçar os valores médios dos meus dados com a média móvel em um gráfico. Eu pesquisei um pouco sobre as médias móveis eo comando conv e encontrei algo que eu tentei implementar no meu código. Então, basicamente, eu computo o meu médio e plotá-lo com uma média móvel (errada). Eu escolhi o valor de wts fora do site mathworks, de modo que está incorreto. (Fonte: mathworks. nlhelpeconmoving-average-trend-estimation. html) Meu problema, porém, é que eu não entendo o que este wts é. Alguém poderia explicar Se tem algo a ver com os pesos dos valores: que é inválido neste caso. Todos os valores são ponderados da mesma forma. E se eu estou fazendo isso inteiramente errado, eu poderia obter alguma ajuda com ele Meus mais sinceros agradecimentos. September 23 14 at 19:05 Usando conv é uma excelente maneira de implementar uma média móvel. No código que você está usando, wts é o quanto você está pesando cada valor (como você adivinhou). A soma desse vetor deve ser sempre igual a um. Se você deseja pesar cada valor uniformemente e fazer um filtro de tamanho N em movimento, então você gostaria de fazer Usando o argumento válido em conv resultará em ter menos valores em Ms do que você tem em M. Use o mesmo se você não se importa os efeitos de Zero preenchimento. Se você tiver a caixa de ferramentas de processamento de sinal, você pode usar o cconv se quiser experimentar uma média móvel circular. Algo como Você deve ler a documentação conv e cconv para obter mais informações se você já não. Você pode usar o filtro para encontrar uma média em execução sem usar um loop for. Este exemplo encontra a média em execução de um vetor de 16 elementos, usando um tamanho de janela de 5. 2) suave como parte da Caixa de Ferramentas de Ajuste de Curva (que está disponível na maioria dos casos) yy suave (y) suaviza os dados no vetor de coluna Y usando um filtro de média móvel. Os resultados são retornados no vetor de coluna yy. O intervalo padrão para a média móvel é 5. Filtros FIR, filtros IIR ea equação de diferença de coeficiente constante linear Filtros de média móvel causal (FIR) Nós discutimos sistemas em que cada amostra da saída é uma soma ponderada de ) As amostras da entrada. Vamos tomar um sistema de soma ponderada causal, onde causal significa que uma dada amostra de saída depende apenas da amostra de entrada atual e outros insumos mais cedo na seqüência. Nem os sistemas lineares em geral, nem os sistemas finitos de resposta ao impulso em particular, precisam ser causais. No entanto, a causalidade é conveniente para um tipo de análise que iria explorar em breve. Se simbolizamos as entradas como valores de um vetor x. E as saídas como valores correspondentes de um vetor y. Então tal sistema pode ser escrito como onde os valores de b são quotweights aplicados às amostras de entrada atuais e anteriores para obter a amostra de saída atual. Podemos pensar na expressão como uma equação, com o sinal de igual signo igual a, ou como uma instrução processual, com o sinal de igual significação atribuição. Vamos escrever a expressão para cada amostra de saída como um loop MATLAB de instruções de atribuição, onde x é um vetor N-comprimento de amostras de entrada, e b é um vetor M-comprimento de pesos. A fim de lidar com o caso especial no início, vamos incorporar x em um vetor mais longo xhat cujas primeiras M-1 amostras são zero. Vamos escrever a soma ponderada para cada y (n) como um produto interno, e faremos algumas manipulações das entradas (como inverter b) para este fim. Esse tipo de sistema é muitas vezes chamado de filtro de média móvel, por razões óbvias. De nossas discussões anteriores, deve ser óbvio que tal sistema é linear e invariante ao deslocamento. Claro, seria muito mais rápido usar a convolução de função MATLAB conv () em vez do nosso mafilt (). Em vez de considerar as primeiras amostras M-1 da entrada como sendo zero, poderíamos considerá-las iguais às últimas amostras M-1. Isso é o mesmo que tratar a entrada como periódica. Bem, use cmafilt () como o nome da função, uma pequena modificação da função mafilt () anterior. Na determinação da resposta de impulso de um sistema, não há geralmente nenhuma diferença entre estes dois, desde que todas as amostras não-iniciais da entrada são zero: Uma vez que um sistema deste tipo é linear e shift-invariante, sabemos que seu efeito em qualquer Sinusoid será apenas a escala e deslocá-lo. Aqui é importante que usemos a versão circular A versão circularmente convoluta é deslocada e escalada um pouco, enquanto a versão com convolução ordinária é distorcida no início. Vamos ver o que a escala exata e deslocamento é usando um fft: Tanto a entrada ea saída têm amplitude apenas nas freqüências 1 e -1, que é como deveria ser, uma vez que a entrada era uma sinusoid eo sistema era linear. Os valores de saída são maiores numa razão de 10,62518 1,3281. Este é o ganho do sistema. E quanto à fase Nós só precisamos olhar onde a amplitude é diferente de zero: A entrada tem uma fase de pi2, como nós pedimos. A fase de saída é deslocada por um adicional 1.0594 (com sinal oposto para a freqüência negativa), ou cerca de 16 de um ciclo à direita, como podemos ver no gráfico. Agora vamos tentar uma sinusoid com a mesma freqüência (1), mas em vez de amplitude 1 e fase pi2, vamos tentar amplitude 1,5 e fase 0. Sabemos que apenas a freqüência 1 e -1 terá amplitude não-zero, então vamos apenas olhar Para eles: Novamente a razão de amplitude (15.937712.0000) é 1.3281 - e quanto à fase é novamente deslocada por 1.0594 Se esses exemplos são típicos, podemos prever o efeito do nosso sistema (resposta de impulso .1 .2 .3 .4 .5) em qualquer sinusoide com freqüência 1 - a amplitude será aumentada em um fator de 1,3281 e a fase (freqüência positiva) será deslocada em 1,0594. Poderíamos continuar a calcular o efeito desse sistema sobre sinusóides de outras freqüências pelos mesmos métodos. Mas há uma maneira muito mais simples, e uma que estabelece o ponto geral. Dado que a circunvolução (circular) no domínio do tempo significa a multiplicação no domínio da frequência, daí decorre que, por outras palavras, a DFT da resposta de impulso é a razão da DFT da saída para a DFT da entrada. Nesta relação os coeficientes de DFT são números complexos. Desde abs (c1c2) abs (c1) abs (c2) para todos os números complexos c1, c2, esta equação nos diz que o espectro de amplitude da resposta de impulso será sempre a relação entre o espectro de amplitude da saída para a da entrada . No caso do espectro de fase, ângulo (c1c2) ângulo (c1) - ângulo (c2) para todos os c1, c2 (com a condição de que as fases diferentes por n2pi são considerados iguais). Portanto, o espectro de fase da resposta ao impulso será sempre a diferença entre os espectros de fase da saída e da entrada (com quaisquer correções de 2pi são necessárias para manter o resultado entre - pi e pi). Podemos ver os efeitos de fase mais claramente se desempacotarmos a representação da fase, isto é, se adicionarmos vários múltiplos de 2pi conforme necessário para minimizar os saltos que são produzidos pela natureza periódica da função ângulo (). Embora a amplitude e a fase sejam normalmente utilizadas para apresentação gráfica e mesmo tabular, uma vez que são uma forma intuitiva de pensar os efeitos de um sistema sobre os vários componentes de frequência de sua entrada, os coeficientes de Fourier complexos são mais úteis algébricamente, A expressão simples da relação A abordagem geral que acabamos de ver funcionará com filtros arbitrários do tipo esboçado, em que cada amostra de saída é uma soma ponderada de algum conjunto de amostras de entrada. Como mencionado anteriormente, estes são muitas vezes chamados filtros de resposta de impulso finito, porque a resposta ao impulso é de tamanho finito, ou às vezes filtros de média móvel. Podemos determinar as características de resposta de freqüência de tal filtro a partir da FFT de sua resposta de impulso e também podemos projetar novos filtros com características desejadas por IFFT a partir de uma especificação da resposta de freqüência. Filtros Autoregressivos (IIR) Não haveria nenhum ponto em ter nomes para filtros FIR, a menos que houvesse algum outro tipo de distinção, de modo que aqueles que estudaram pragmática não ficarão surpresos ao saber que existe de fato outro tipo principal Do filtro tempo-invariante linear. Estes filtros são às vezes chamados recursivos porque o valor de saídas anteriores (assim como entradas anteriores) importa, embora os algoritmos sejam geralmente escritos usando construções iterativas. Eles também são chamados filtros Infinite Impulse Response (IIR), porque em geral sua resposta a um impulso continua para sempre. Eles também são chamados de filtros auto-regressivos, porque os coeficientes podem ser considerados como o resultado de fazer uma regressão linear para expressar valores de sinal como uma função de valores de sinal anteriores. A relação dos filtros FIR e IIR pode ser vista claramente numa equação de diferença de coeficiente constante linear, isto é, estabelecendo uma soma ponderada de saídas igual a uma soma ponderada de entradas. Isto é como a equação que damos anteriormente para o filtro causal FIR, exceto que, além da soma ponderada de insumos, também temos uma soma ponderada de saídas. Se quisermos pensar nisso como um procedimento para gerar amostras de saída, precisamos reorganizar a equação para obter uma expressão para a amostra de saída atual y (n), Adotando a convenção de que a (1) 1 (por exemplo, escalando outros como E bs), podemos nos livrar do termo 1a (1): y (n) b (1) x (n) b (2) x (n-1). B (Nb1) x (n-nb) - a (2) y (n-1) -. - a (Na1) y (n-na) Se todos os a (n) diferentes de a (1) são zero, isso reduz a nosso velho amigo o filtro FIR causal. Este é o caso geral de um filtro (causal) LTI, e é implementado pelo filtro de função MATLAB. Vejamos o caso em que os coeficientes b diferentes de b (1) são zero (em vez do caso FIR, onde a (n) são zero): Neste caso, a amostra de saída corrente y (n) é calculada como um (N-1), y (n-2), etc. Para ter uma idéia do que acontece com esses filtros, vamos começar com o caso em que: Isto é, a amostra de saída atual é a soma da amostra de entrada corrente e metade da amostra de saída anterior. Bem, tome um impulso de entrada através de alguns passos de tempo, um de cada vez. Deve ficar claro neste ponto que podemos facilmente escrever uma expressão para o n-ésimo valor de amostra de saída: é apenas (se MATLAB contado a partir de 0, isso seria simplesmente .5n). Uma vez que o que estamos calculando é a resposta ao impulso do sistema, temos demonstrado por exemplo que a resposta ao impulso pode de fato ter infinitas amostras diferentes de zero. Para implementar esse filtro trivial de primeira ordem no MATLAB, poderíamos usar o filtro. A chamada será assim: eo resultado é: Este negócio é realmente ainda linear Podemos olhar para isto empiricamente: Para uma abordagem mais geral, considere o valor de uma amostra de saída y (n). Por substituição sucessiva poderíamos escrever isto como Isto é exatamente como o nosso velho amigo a forma convolução-soma de um filtro FIR, com a resposta ao impulso fornecida pela expressão .5k. E o comprimento da resposta ao impulso é infinito. Assim, os mesmos argumentos que usamos para mostrar que os filtros FIR eram lineares agora se aplicam aqui. Até agora isso pode parecer um monte de barulho por não muito. O que é toda esta linha de investigação bom para Bem responder esta questão em etapas, começando com um exemplo. Não é uma grande surpresa que possamos calcular uma amostra exponencial por multiplicação recursiva. Vamos olhar para um filtro recursivo que faz algo menos óbvio. Desta vez, torná-lo um filtro de segunda ordem, de modo que a chamada para filtrar será da forma Vamos definir o segundo coeficiente de saída a2 para -2cos (2pi40) eo terceiro coeficiente de saída a3 para 1, e olhar para o impulso resposta. Não é muito útil como um filtro, na verdade, mas gera uma onda senoidal amostrada (de um impulso) com três multiplicações por amostra. Para entender como e por que faz isso, e como filtros recursivos podem ser projetados e analisados ​​em O caso mais geral, precisamos dar um passo atrás e dar uma olhada em algumas outras propriedades de números complexos, sobre o caminho para a compreensão da transformada z. A seguir, é um rígido codificado 3 pontos ponderados simétrica média móvel filtro: Então, minhas suposições para Como um filtro de média móvel simétrica ponderada n-ponto seria função são as seguintes: Meu objetivo final é criar um filtro de média móvel simétrica ponderada que tem um número modular de pontos sobre o qual pode média. A parte que realmente me recebe é a ponderação em si, e enquanto estou certo de que um aninhado para loop de algum tipo faria o truque, eu não posso ver como eu iria até mesmo começar algo assim. Obrigado por tomar o tempo para inspecionar a minha pergunta, qualquer feedback seria muito apreciada. Escolha o seu país

No comments:

Post a Comment